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Abstract

The Gibbs ensemble algorithm is implemented to determine the liquid-liquid

phase coexistence of binary fluid mixtures interacting via a two-body Lennard-Jones +

three-body Axilrod-Teller potential.  The contributions of both two-body and three-body

interactions are calculated exactly.  This is the first time that three-body interactions

have been incorporated rigorously in a molecular simulation of a binary mixture.  The

addition of the Axilrod-Teller term can affect liquid-liquid miscibility substantially.  In

particular, Axilrod-Teller interactions have a large effect on the densities of the

coexisting liquid phases.

1. Introduction

Theories of liquids have almost invariably assumed that intermolecular

interactions are limited to pairs of molecules.  Calculations of fluid properties [1] ignore

routinely the contributions of three- or more-body interactions.   However, the available

evidence [2-7] suggests that the effect of three-body interactions may be important in

some circumstances.  For example, it is reported [8] typically that a two-body plus an

Axilrod-Teller potential [9] improves the prediction of third virial coefficients of atomic

systems.  Three-body interactions also appear to have a greater role in molecular fluids

[3,4].  Nevertheless, the exact role of three-body interactions remains unclear partly

because attempts to account for three-body interactions commonly involve

approximations.  Furthermore, previous work on three-body interactions has been

confined almost exclusively to pure fluids.

In principle, molecular simulation can be used to calculate three-body

interactions rigorously.  However, the use of molecular simulation has been restricted

largely to pairwise interactions, and the few studies [2,3,10-13] that have attempted to

include three-body interactions have relied on various approximations rather than

rigorous calculation.  For example, simulations have been reported [12,13] which

estimate the contribution of three-body effects via periodic calculation of three-body

interactions.  Recently [14],  Gibbs ensemble simulation has been used to calculate

exactly the effect of three-body interactions on the vapour-liquid equilibria of pure

fluids.  The results [14] indicate that Axilrod-Teller interactions can alter significantly



the density of the liquid branch of the coexistence curve.  This suggests that three-body

interactions may have a significant effect on liquid-liquid equilibria.

The aim of this work is to investigate the effect of three-body interactions on the

liquid-liquid equilibria of binary mixtures.  The Gibbs ensemble [15] is used to calculate

the liquid-liquid phase coexistence of binary mixtures with components interacting via a

Lennard-Jones + Axilrod-Teller intermolecular potential.  The calculation of three-body

interactions is exact with both two- and three-body interactions contributing to the

acceptance criterion of each and every attempted Monte Carlo move.  This is the first

time that three-body interactions have been incorporated rigorously in a molecular

simulation of a binary mixture.

2. Theory

2.1  Intermolecular Potential

The intermolecular potential (u) is the sum of contributions from two-body

interactions(u(ij)) and three-body dispersion interactions (u(ijk)).

( ) ( )u u ij u ijkdisp= +     (1)

The Lennard-Jones potential was used to calculate interactions between pairs of

molecules separated by a distance rij
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where the ε and σ parameters are characteristic of the strength of intermolecular

interaction and molecular size, respectively.

The Axilrod-Teller term [9] accounts for the contribution of three-body

dispersion interactions
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where θ refers to the inside angles of a triangle (see Fig. 1) formed by three molecules i,

j and k, and ν is the nonadditive coefficient.  This potential is negative for near-linear

configurations and positive for acute triangular arrangements.

2.2  Potential Parameters

The calculations were performed in reduced units relative to component 1.  The

parameters for the Lennard-Jones potentials were ε22/ε11 = 0.75, σ22/σ11 = 0.95,

ε ε ε12 11 220 7= .  and σ12 = (σ11 + σ22)/2.  This combination of parameters was chosen

because earlier work [16] indicated that they are associated with liquid-liquid equilibria

in a binary mixture of Lennard-Jones molecules.

For the Axilrod-Teller potential, we must consider the nonadditive coefficient

arising from triplets composed of different combinations of the component molecules.

There are four distinct possible combinations of three molecules in a binary mixture.

The nonadditive coefficient of component 2 molecules was related to component 1 by

v v222 111= α     (4)

where α is an arbitrary adjustable parameter.  A value of 
v111

11 11
9ε σ

 = 0.0712 was used

which corresponds to the nonadditive coefficient of an atom such as argon [17].  The

unlike nonadditive coefficients were obtained by taking a geometric average of the like

interactions.
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2.3 Simulation Details

The NPT-Gibbs ensemble [15] was used to simulate the coexistence of two

liquid phases.  A total of 200 molecules were partitioned between two boxes to simulate

the two coexisting liquid phases.  The temperature of the entire system was held

constant and surface effects were avoided by placing each box at the centre of a periodic

array of identical boxes.  Equilibrium was achieved by attempting molecular

displacements (for internal equilibrium), volume fluctuations (for mechanical

equilibrium) and particle interchanges between the boxes (for material equilibrium).

The simulations were performed in cycles with each cycle consisting of 200

attempted displacements, a single volume fluctuation, and 500 interchange attempts.

The maximum molecular displacement and volume changes were adjusted to obtain,

where possible, a 50% acceptance rate for the attempted move.  Ensemble averages

were accumulated only after the system had reached equilibrium.  The equilibration

period was typically 2500 cycles and a further 2500 cycles was used to accumulate the

averages.  The calculations were truncated at intermolecular separations greater than

half the box length, and appropriate long-range corrections [18] were used to obtain the

full contribution of pair interactions to energy and pressure.  The full (untruncated)

three-body potential was calculated to avoid uncertainties that arise when calculating

three-body long-range corrections from unknown pair-distribution functions.

Alternative computational approaches for long-range corrections are available [19].

The contributions of both two-body and three-body interactions to the

configurational energy of the fluid were recalculated for each attempted move and the

configurational properties were updated after each successful move.  Therefore, changes

to both two-body and three-body  interactions contributed to the acceptance criterion

and the predicted phase coexistence curve is the result of two-body and three-body

interactions.  A typical run required approximately 57 CPU hours on a Cray YMP-EL

and 9 CPU hours on a Fujitsu VPP300 supercomputer.



2.4  Estimating Critical Properties

Gibbs ensemble simulations cannot be used to determine directly the critical

point.  However, the critical temperature Tc* and critical composition can be estimated

by fitting the simulation data to the following relationships

x x C
T
Tc

β α− = −1

0 32*

*

.

      (7)
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The critical density can be obtained by using the density analogues of Eqs (7) and (8).

3. Results

The liquid-liquid coexistence data obtained from molecular simulation are

summarised in Tables 1 and 2. The normal convention was adopted for the reduced

density (ρ* = ρσ3), temperature (T* = kT/ε), energy (E* = E/ε), pressure (P* = Pσ3) and

chemical potential (µ* = µ/ε).  The chemical potential was determined from the equation

proposed by Smit and Frenkel [20].  The data in Table 1 are for α = 1 and results for α =

0.5 are included in Table 2.  In Tables 1 and 2 the contribution of Lennard-Jones (LJ)

and Axilrod-Teller (AT) interactions to both the energy and pressure are identified.  A

value of P* = 1 was used in both cases to ensure a reasonably high density for the

coexisting liquid phases.  The estimated critical properties are summarized in Table 3.

4. Discussion

Exact calculations of three-body interactions in fluids are rare because of the

very large increase in computation required compared with two-body calculations.

Typically, two-body Gibbs ensemble simulations are reported with between three to five

hundred molecules.  However, to feasibly conduct three-body calculations, we have

limited the simulations to two hundred molecules.

When α = 1, the nonadditive three-body coefficients for the two components are

identical and all the mixed three-body interactions are also identical.  The calculated



coexistence properties for a binary mixture of this type are summarised in Table 1 and

the temperature-composition behaviour is illustrated in Fig. 2.  The data in Table 1

indicate that Axilrod-Teller interactions typically represent between 5% and 6% of the

Lennard-Jones contribution to the energy of either liquid phase.  The overall

contribution of the Axilrod-Teller term is positive thereby increasing the energy of the

liquid phases.  Furthermore, the contribution of the Axilrod-Teller term to pressure

outweighs the contribution from the Lennard-Jones potential.  The comparison of the

composition-temperature behaviour of this mixture with the Lennard-Jones fluid in Fig.

2 indicates that the effect of three body interactions is to shift the coexistence curve to

substantially lower temperatures.  In particular, the calculated critical temperature (Fig.

2 and Table 3) is substantially lower than the critical temperature of the Lennard-Jones

fluid.  If we assume that the critical temperature is a qualitative indicator of the degree

of miscibility (i.e., the critical temperature increases with decreasing miscibility), the

effect of three-body interactions in this case is to increase the miscibility of the mixture.

However, it should be noted that in this case, the magnitude of the nonadditive

coefficient assigned to component 2 is unrealistically high in view of the fact that

component 2 has substantially weaker two body interactions than component 1.

The nonadditive dispersion coefficient (v) of a molecule is proportional to the

additive dispersion coefficient (C6  = 4εσ6).  In view of the fact that ε22/ε11 = 0.75, a

value of α = 0.5 gives a more realistic description of the relative nonadditive coefficient

for the two components.  The calculations for α = 0.5 are summarised in Table 2.   The

data in Table 2 show that the Axilrod-Teller term typically contributes 4% of the

Lennard-Jones contribution to the energy of the coexisting liquid phases.  The

contribution of the Axilrod-Teller term to both energy and pressure is positive and its

contribution to pressure outweighs the contribution from the Lennard-Jones potential.

The temperature-coexistence behaviour illustrated in Fig. 2 indicates that the Axilrod-

Teller term reduces substantially the composition range for two-phase coexistence but

two-phase coexistence is observed at considerably higher temperatures.  This latter point

is exemplified by a substantial increase in the critical temperature compared with the

Lennard-Jones mixture (Fig. 2 and Table 3).



The  temperature-density behaviour of the Lennard Jones + Axilrod Teller and

Lennard-Jones [16] mixtures is illustrated in Fig. 3.  It is apparent from Fig. 3 that the

addition of the Axilrod-Teller term reduces substantially the densities of the coexisting

phases.  The shift to lower densities partly offsets the increase in repulsion from three-

body interactions.  This is consistent with earlier work [17] for a one-component fluid

which demonstrated that Axilrod-Teller interactions reduce substantially the density of

the liquid branch of the vapour-liquid coexistence curve.  When P* = 1, the densities of

the two coexisting phases of the Lennard-Jones mixture are similar at all temperatures.

In contrast, the addition of the Axilrod-Teller term increases the density difference

between the coexisting phases. Therefore, liquid-liquid immiscibility in the Lennard-

Jones + Axilrod-Teller mixtures is observed for a larger range of densities than is

observed in the Lennard-Jones mixture.

What are the implications of these results for real fluids?  The answer to this

question depends primarily on the adequacy of Axilrod-Teller term to model three-body

interactions.  The Axilrod-Teller potential only represents the contribution of dipoles to

three body interactions.  Other higher multipole terms can also contribute to three body

interactions but their effect is generally negligible [4,6].  Further, there is evidence [21]

that the effect of higher multipole terms is offset by a fourth order triple-dipole term.

Consequently, the triple-dipole term as represented by the Axilrod-Teller potential, is

likely to be a good representation of three-body dispersion interactions. However, the

Axilrod-Teller potential only accounts for attractive dispersion interactions.  In reality,

repulsive interactions from three-body overlap are also possible. Rittger [4] suggested

that repulsive overlap could potentially explain inaccuracies in the analysis of some

thermodynamic data for xenon.  Sadus and Prausnitz [9] reported that the contribution

to the configurational energy of three-body attraction is offset substantially by

contributions from three-body repulsion, as represented by the electrostatic distortion

model [22].

5.  Conclusions

For the first time, three-body interactions have been incorporated rigorously in a

molecular simulation of a binary mixture.  Three-body dispersion interactions can



potentially have a significant effect on the liquid-liquid equilibria of binary mixture.

The exact nature of the effect depends on the relative magnitude of three-body

interactions with respect to two-body dispersion interactions.  In the absence of any

compensating three-body repulsion or other interactions, the most probable effect of the

Axilrod-Teller term is to decrease substantially the liquid-liquid miscibility of binary

mixtures.  In particular, the densities of the coexisting liquid phases are affected

significantly by the Axilrod-Teller term.

List of symbols

A fitting parameter in Eq. (8); phase identifier

B fitting parameter in Eq. (8); phase identifier

C fitting parameter in Eq. (7)

c critical property

E configurational energy

k Boltzmann’s constant

P pressure

r intermolecular distance

T temperature

u intermolecular potential

v nonadditive coefficient

x1 mole fraction of component 1

Greek Alphabet

α adjustable parameter

ε Lennard-Jones energy parameter

σ Lennard-Jones distance parameter

ρ number density

θ intramolecular angle

Subscripts and Superscripts

* reduced property

AT Axilrod-Teller

disp dispersion



i, j, k molecule i, j or k

LJ Lennard-Jones

l liquid

v vapour
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Table 1

Gibbs-ensemble simulation of liquid-liquid equilibria at P* = 1 using the Lennard-Jones

+ Axilrod-Teller intermolecular potential with  α = 1.†

Liquid Phase A

T* ρ* x1 -E*LJ E*AT -P*LJ P*AT µ*1 µ*2

0.955 0.763(8) 0.884(36) 4.84(15) 0.25(1) 0.38(9) 0.57(2) 2.64 1.53

0.96 0.764(13) 0.902(42) 4.93(25) 0.25(2) 0.33(11) 0.58(4) 2.59 1.47

0.97 0.750(15) 0.807(27) 4.41(15) 0.23(1) 0.25(15) 0.53(4) 2.48 1.44

0.99 0.751(15) 0.814(72) 4.50(35) 0.24(2) 0.31(9) 0.53(5) 2.41 1.39

1.0 0.731(15) 0.589(167) 3.70(45) 0.20(1) 0.20(6) 0.44(4) 2.54 1.32

Liquid Phase B

T* ρ* x1 -E*LJ E*AT -P*LJ P*AT µ*1 µ*2

0.955 0.721(22) 0.170(28) 3.07(11) 0.21(1) 0.29(7) 0.45(4) 2.79 1.46

0.96 0.717(22) 0.158(40) 3.04(10) 0.21(2) 0.28(5) 0.45(5) 2.82 1.49

0.97 0.720(19) 0.186(59) 3.07(10) 0.21(1) 0.30(8) 0.45(4) 2.71 1.39

0.99 0.724(16) 0.244(67) 3.08(6) 0.20(2) 0.21(9) 0.43(4) 2.56 1.35

1.0 0.720(14) 0.418(174) 3.33(30) 0.19(1) 0.22(3) 0.42(3) 2.52 1.31

†Values in parentheses indicate the uncertainty in the last digit.



Table 2

Gibbs-ensemble simulation of liquid-liquid equilibria at P* = 1 using the Lennard-Jones

+ Axilrod-Teller intermolecular potential with  α = 0.5.†

Liquid Phase A

T* ρ* x1 -E*LJ E*AT -P*LJ P*AT -µ*1 -µ*2

0.97 0.758(10) 0.847(85) 4.64(36) 0.23(2) 0.25(10) 0.52(6) 2.59 1.57

0.99 0.747(18) 0.778(119) 4.34(49) 0.20(3) 0.24(9) 0.46(8) 2.47 1.47

1.02 0.732(10) 0.781(90) 4.21(34) 0.19(2) 0.19(7) 0.42(5) 2.50 1.57

1.04 0.732(13) 0.725(64) 4.01(23) 0.17(1) 0.16(9) 0.39(4) 2.47 1.45

1.08 0.707(5) 0.683(60) 3.75(17) 0.16(1) 0.16(5) 0.33(2) 2.61 1.52

Liquid Phase B

T* ρ* x1 -E*LJ E*AT -P*LJ P*AT -µ*1 -µ*2

0.97 0.742(14) 0.358(31) 3.32(10) 0.131(10) 0.09(8) 0.29(2) 2.58 1.53

0.99 0.736(16) 0.349(51) 3.24(8) 0.124(5) 0.08(12) 0.27(2) 2.57 1.45

1.02 0.713(15) 0.358(48) 3.10(8) 0.115(5) 0.07(7) 0.25(2) 2.57 1.57

1.04 0.712(10) 0.310(67) 3.06(8) 0.114(5) 0.11(6) 0.24(1) 2.59 1.46

1.08 0.691(7) 0.317(60) 3.97(6) 0.110(4) 0.06(7) 0.23(1) 2.49 1.51

†Values in parentheses indicate the uncertainty in the last digit.



Table 3

Estimated liquid-liquid critical properties†

v*111 α P*c T*c ρ*c xc(1)

0.0712 1 1 1.01 0.732 0.500

0.0712 0.5 1 1.148 0.650 0.430

0 0 1 1.112 0.728 0.494

† Data for the Lennard-Jones mixture (v*111  = 0, α = 0) are from the literature [16].
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Fig. 1.  Triplet configuration of atoms i, j and k in Eq. (3).
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Fig. 2.  The temperature-composition projection at P* = 1 for binary mixtures exhibiting

liquid-liquid equilibria.  Results are shown for calculations using the Lennard-Jones

potential (∆, [16]) and the Lennard-Jones + Axilrod-Teller potential with α = 1 (¡) and

α = 0.5 (l).  The solid lines were obtained from fitting the simulation data to the critical

exponent relationships (Eqs (7) and (8) ).  The estimated critical point is identified (×).
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Fig. 3.  The temperature-density projection at P* = 1 for binary mixtures exhibiting

liquid-liquid equilibria.  Results are shown for calculations using the Lennard-Jones

potential (∆, [16]) and the Lennard-Jones + Axilrod-Teller potential with α = 1 (¡) and

α = 0.5 (l).  The solid lines were obtained from fitting the simulation data to the critical

exponent relationships (Eqs (7) and (8)).  The estimated critical point is identified (×).


